RHIC Pressure Rise Observation and Questions

S.Y. Zhang

Brookhaven National Laboratory

- 1. RHIC injection pressure rise and electron cloud
 - Electron cloud induced pressure rises for gold, deuteron and proton
- 2. RHIC electron cloud is different from other machines
 - RHIC EC happens at some warm pipes, for up to 216 ns bunch spacing
- 3. Observation of RHIC EC induced pressure rise
 - RHIC EC induced pressure rise characteristics
- 4. Transition pressure rise in gold and deuteron operations
 - quasi exponentially proportional to total beam intensity
- 5. Effect of the beam halo scraping
 - Halo scraping effect may explain most observations
- 6. Questions
 - Many questions remain
- 7. Study plans
 - Beam scraping, beta star study, NEG pipes in RHIC and Tandem

1. RHIC injection pressure rise and electron cloud

- Electron cloud induced pressure rises have been observed at the RHIC injection for gold, deuteron and proton beams.
- Signals observed by electron detectors closely related to the pressure rises.
- Pressure rise and EC are very sensitive to bunch spacing, and bunch intensity.
- At given intensity, both e-signal and pressure rise tend to saturate.
- Bunch gaps allow higher intensity.
- Beam scrubbing successfully tested, which could be ready to use in the proton operation.
- Solenoid can suppress both EC and pressure rise. No complete suppression has been achieved.

2. RHIC electron cloud is different from other machines

- RHIC electron cloud observed at up to 216 ns bunch spacing, compared with B- factories 4 to 8 ns, APS 20 ns, SPS 25 ns.
- EC and pressure rise observed only at warm straight sections, cold pipe (r = 3.46 cm) is supposed to have lower threshold than warm pipe (r = 6.14 cm).
- No noticeable cryogenic heat load has been reported.
- Pressure rises are non uniformly distributed in warm sections, the locations may change.
- No significant effect of beam instability and emittance growth due to EC has been observed. Is this because of limited warm regions (700m / 3834m)?

3. Observation of RHIC EC induced pressure rise

- EC threshold at Q3 Q4 (single beam straight section) is ~ 60%
 of that at the interaction region.
 Q3 Q4 is 34 m, IR is 20 m long.
 Chambers are similar.
- IR12 pressure rise was much worse than IR4. Chambers are the same, but many interruptions at IR4 (RF & instrumentation).
- Gold beam induced pressure rise is much worse than proton beam.
- β* = 10 m at the injection in Run 3 improved pressure rise. β* was 3 m in Run 2.
- A < 1 mm orbit drift at the RF loop-closing caused significant change in pressure rise.
- For proton run, pressure rise decreased as acceleration started.

4. Transition pressure rise in gold and deuteron operations

- Transition pressure rise is quasi - exponentially proportional to total beam intensity.
- Not related to bunch spacing,
 55 bunch and 110 bunch.
- Not related to beam loss.
- For same intensity, pressure rise at Q3 - Q4 is worse than at IR, similar to electron cloud induced pressure rise.
- Not related to ion species.
 Au's ionization cross section is much larger than deuteron's, so beam gas ionization is not a dominant factor?
- Pin-diode signals at Bi8 at the transition, no beam loss can be identified. Pressure rises in 2 orders of magnitude.

- In proton run, pressure rise decreased as ramp started. – Both beam transverse size and momentum spread decreased as beam accelerated, which one is more important?
- Beam particles in bunch gap is probably not dominant, since otherwise pressure rise should happen at all similar chambers.
- In d-Au run, pressure rise increased as ramp started, and peaked at the transition.
- At the d-Au acceleration, beam transverse size decreased, but the beam momentum spread increased, and peaked at the transition.
- The beam momentum spread may produce halo at the quads, due to the nonlinearities.

5. Effect of the beam halo scraping

- 1. RHIC electron cloud and pressure rise observed with up to 216 ns bunch spacing.
- 2. Pressure rise is localized, and locations may change.
- 3. Single beam straight section's thresholds much lower than IR.
- 4. IR12 pressure rise much worse than IR4, chambers are same.
- 5. Beam steering may affects pressure rise.
- 6. Gold beam pressure rise is much worse than proton beam.
- 7. Pressure rise reduces at the beam acceleration in proton ramp.
- 8. Pressure rise increases at the gold and deuteron beam ramp, peaked at the transition.

- 1. Halo scraping produced ions may help secondary electrons to survive long bunch gap.
- 2. Halo scraping depends on the beam tuning and locations.
- 3. Longer straight sections increase yield of halo scraping?
- 4. Less interruption in pipe helps the beam scraping yield.
- 5. Beam steering affects halo scraping.
 - 6. Gold beam scraping produces more ions. Ion production ~ q^3.
 - 7. Smaller beam size and momentum spread reduces beam scraping?
 - 8. Gold beam momentum spread increases at the acceleration, and peaked at the transition.

6. Questions

1. Electron cloud and pressure rise

- There is a close relation between injection pressure rise and esignal for Au, d, and proton runs.
- Quantitative explanation is needed, by better electron detection and analysis.
- Pressure rise looks similar to e - signal, but it is in log scale.

2. Halo scraping and pressure rise

- Low pressure rise in 1e-10 Torr range is linearly proportional to beam intensity, rather than the beam loss, normal halo?
- Transition pressure rise is quasi exponentially proportional to total beam intensity.
- Evidence so far did not agree with the electron cloud and ISR type ion desorption.

3. Pressure rise and electron signal

- Electron multipacting signals at high and low pressure rises are very different.
- Ion electron plasma exists at high pressure. Electrons and ions respond differently at bunches' passing (dynamics).
- Beam gas desorption (ion), ion and electron desorption (electron, ion, neutral particle), ...
- Electrons' role is more important?

4. Run away type pressure rise

- Quite few pressure run away in Run 2 with gold beam, but all were accompanied with beam loss.
- It is possible that the beam loss created ions raised the electron cloud space charge limit.
- Beam loss may also create runaway type pressure rise?

Pressure Run-away in Run 2

7. Study plans

1. Beam scraping

- Beam scraping tested in Run 3.
 Loss spread in 300 meters.
- Two steering dipoles at Bi12, and Yo10 (NEG pipe). Pin-diode at Bi12.
- Ion desorption of high energy ion particles at glancing angle.
- Compare steel and NEG walls.
- 2. β^* effect for transition pressure rise
 - α 1 and tune variation were main concerns to choose β * = 5 m at the transition.
 - In d-Au run, the transition beam loss was small, showing that there might be some room.
 - Transition β^* = 8 m at the IR10, PHOBOS detector, for study?

10

3. NEG pipes in RHIC

- 11 NEG coated pipes, each
 5.2 m long, installed in RHIC.
- Main purpose is to verify its effectiveness for both EC and transition type pressure rise.
- Some confidence with SEY and electron desorption, not yet for lon desorption.
- Activation conditions?

4. NEG pipes in Tandem

- Verify NEG pipes for RHIC.
- Ion desorption of NEG coated pipe, at glancing angle beam scraping, different activations, at saturation.
- Activate 200° C, 250° C, 300° C.
- Use saturated NEG pipe to overcome the complication of large pumping capability of NEG film.

